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A Dyadic Green’s Function for the Piano-Concave

Quasi-Optical Resonator
P. L. Heron, F. K. Schwering, Fellow, IEEE, G. P. Monahan, Student Member, IEEE,

J. ~. Mink, Fellow, IEEE, and M. B. Steer, Senior Member, IEEE

Abstract-An approximate dyadic Green’s function is derived
for a quasi-optical resonator. The Green’s function is comprised
of resonant and nonresonant terms corresponding to coupling to
the modal and nonmodal resonator fields. The effect of losses
due to diffraction, finite reflector conductivity and radiation
are included. Experimental one- and two-port measurement of
antennas in an X-band cavity compare favorably with theoretical
predictions.

I. INTRODUC~ON.

A N APPROXIMATE dyadic Green’s function, GeC, is

developed which is suitable for use in the design and

analysis of cavity type quasi-optical power combiners. Fig. 1

depicts the resonator which consists of an infinite, perfectly

conducting plane located at z = O, and a partially transparent

shallow spherical reflector which intersects the z-axis at z = D
and has a rectangular aperture of dimensions 2aZ and 2aY. GeC

is determined by separately considering the resonant cavity

modal fields, and nonresonant fields so that

GeC = Ge. + Gen (1)

where the subscripts T and n refer to resonant and nonresonant

fields respectively. Ge. is determined using the approach of

[1] generalized for arbitrary resonator spacing and operating
frequency. Gen is found using a half space Green’s function,

~eh, then considering the field components which cannot

couple into cavity modes.

II. RESONANT FIELDS

A. Beam Modes

The resonant electric fields within the cavity are to be the

superposition of a diverging modal wavebeam traveling in

the u, direction (l!3~m) and a converging modal wavebeam

traveling in the –u% direction (Exm). Assuming that all
resonator dimensions are large compared with a wavelength,
that D2/a2 >> AJ holds for both a = am and a = av, and that
the Fresnel number IV = a2/(DJ) is sufficiently large, the
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Fig. 1. Cross-section of tbe Piano-concave resonator.

traveling wavebeams can be expressed as Hermite-Gaussian

functions for rectangular apertures [2]:

EL(%Y>2’)

= (M/~)’/4
imxym,nl (1 + u2)-1/4. .

(1+ .2)-1 /4Hem(tiz/xz)Hen( tiY/Y.)

{
; [(~/2b)2+ (1//Yz)2]-exp ––

() 2
-’(u)

-(”:x “;}
-’(v) > (2)

where the Herrrtite polynomials are defined by

Hen(X) = (–1)” exp(X2/2)& (exp(–X2/2)) (3)

and

T: = X2(1 + d), y: = Y2(1 + ?7),
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The resonant source fields excited by a current density J,s

in the z = d plane are expressed as the series

In these expressions Fz, Fg are the focal lengths of the

concave reflector due to curvature along the x and y axes,

respectively, and k is the free space wavenumber [3]. The

wave beam modes are normalized and in any constant z plane

satisfy the orthogonality condition

{

fmn(zin – J%.)> Osz <d,

Es = ~ am.(l?;n – (1+ cmn)E:n), d < .z ~ D,

‘“ 9mnEAn 3 z>D,

(8)

and the fields H~ and Ifs are found using

(9)

B. Cavity Resonant Fields

(4)

Boundary conditions are applied at the reflector surfaces to

determine the form of the cavity modal resonant fields. The

planar reflector is assumed to be perfectly conducting so that

i& x E = O at z = O. The spherical reflector is characterized

by a reflection coefficient &n and a transmission coefficient

Tm. for the mn th Hermite-Gaussian beam mode. Resonant

transverse fields excited by a source current are expressed as

a series of these modal fields with the coefficients determined

by use of the Lorentz reciprocity theorem and an applied test

field. This test field consists of a single mode wave beam

with polarization components in both the & and Uv directions

which converges on the cavity from z > D. The transverse

modal test fields are

ET,st =
{

cst(EG — E$)j O< Z<D,

iiT Es< + bst E2 , z>D.
(5)

The coefficients C,t = c$)iiz + c~)~v, b,~ = bya. + !!@y,

and ~ = & + ay for each of the regions are related through

the boundary conditions at the spherical reflector. It can be

shown that

Tst&r
c&&=

1 + R.t$b.t

and

(bst= ~–
T:t

)
&,

s 1 + R8t&t

(6)

(7)

where @st = E~/E; is evaluated at the surface of the

spherical reflector, Since at z = D the phase fronts of all

modes correspond approximately to the surface of the spherical

reflector [2], ~st is evaluated at {z, y, z} = {O, O, D}.

Using the boundary conditions at the spherical reflector as

well as requiring continuity of the field at z = don a mode by

mode basis, the expansion coefficients of Es for the various

regions are related by

(l+6mn)=-R ;mn,
mn
Rm.+mn

amn = gmm
T’mn

(
1– T

‘“ )~mn = am. ~ ~~tim” , (lo)
mn

where T~n = E&/Ezn is evaluated at {x, y, z} =
{O, O, d}. The unknown coefficients of (8) can now be de-

termined using ~T,.t and the Lorentz reciprocity theorem.

C. Application of Reciproci~ Theorem

The Lorentz reciprocity theorem is now applied over the
volume 0 which is bounded by the surface S = S1 + S2 as
shown in Fig. 1. For this situation, the Lorentz integral is

Since & x E = Oat z = O, the integral on S1 vanishes. Using

(4) with (5), (8), and (9), the integral over S, reduces to

+E:.%g.t x (& x k)] “ &dS. (12)

Since the &z component of J,s produces an u. polarized

electric field and the ~ component of JS produces an iig

polarized electric field, (11) and (12) result in

where IT = Uziiz -1-Uvav.

{ ‘m.)
Rm.4m. +~m.—

2(1-T7nn)(l+R~. &.) (~;n - E:W)(&& - fi:.)~t, 0< z <d,

Ge. = ~ ‘“”*’””— 2(l+Rrnn@~n) (E;. + R;j$mn ) (i%? – ‘i;rt)~t~ d<z <D,

T
J%n(k. – %#t>

mn /
—

2(l+Rm.@mn)
D<z,

(14)
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Fig. 2. Comparison of theoretical (line) and measured (points) modal field
distribution forthe TEMOo andTEMOl modes afongtheliney= –13.2 cm.

III. GREENS FUNCTION

The cavity resonant fields are expressed by combining (8),

(10), and (13). The resonant Green’s function is then written

from the resulting expression as (14) (see (14) at the bottom

of p. 257) where E$n is a function of the source coordinate

system + = {ti, ~, .4}, and l?~n is a function of the observation

coordinate system r = {z, y, z}.

Conductor losses and mode diffraction losses are included

in (14) by perturbing the value of Rmn. Diffraction losses are

computed using the method proposed by Soohoo [4] in which

an integral equation for the resonator is formulated by use

of Huygen’s principle, then solved numerically to determine

a modal beam transit gain. Losses due to finite conductivity

of metallic reflectors are computed using surface resistance

calculations. The conductor losses at the planar reflector are

also lumped into the characteristics of the spherical reflector.

Equation (14) is modified by multiplying Rmn by the modal

transit gain and conductor reflection coefficient.

The nonresonant field term, Gen, is derived by assuming

that the nonresonant field structure near the plane z = d is

essentially unchanged if the spherical reflector is removed.

The half-space bounded by an infinite conducting plane has

a Green’s function

Geh ()~_vv—= ~ (G,(r; +) - Go(T-; + - 2AiZ))
.iWpt) o

+2 Go(r; + – 2iiiz)iiz&, (15)

where

Go(r-; f) =
exp(~kl~ – ;I)

47rlr– +1 ‘
and ~ = Uzaz + &@v + &uZ.

Geh includes coupling into paraxial Hermite-Gaussian trav-
eling wave beams that would become resonant modal fields in
the presence of the curved reflector. This component, GeP, is

removed from Geh to produce Ge.. GeP is found using

Gep = JJm+o Ger. (16)
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Fig. 3. Predicted (line), using (17), and measured (points) impedance for
two inverted-L antennas in a Piano-concave resonator.

Thus, the complete Green’s function for the interior of the
cavity is expressed using (1) as

“(-E;. - E:n)(-l$;n– fi:n)z, 0<2 <D. (17)

IV. RESULTS AND CONCLUSION

The validity of (17) was investigated by comparing mea-

sured field-strength with that predicted by theory. An X-band

cavity was fed through the planar reflector by a short inverted-

L antenna. The resonant fields were mapped by studying

changes in the antenna reflection coefficient as a function

of the position of a small lossy sphere in the z = 40 mm
plane. Fig. 2 shows a comparison of the measured field profile

with that predicted by Ger near resonance. The antenna is

electrically short and is treated as a point source. Verification

of the complete Green’s function was performed by taking

calibrated two-port measurements for two inverted-L antennas

in the resonator. The theoretical impedance 212 for the two

antennas in the cavity was computed using (17) and showed

good agreement with measurements. Fig. 3 shows typical

results comparing measured and calculated values of [2121.

In conclusion, the dyadic Green’s function represents the

resonant and nonresonant fields excited by a current density

and may be used in the design of probe or antenna excited
quasi-optical cavities and Gaussian waveguiding systems.

[1]

[2]

[3]

[4]

lWmIWNt2E.9

J. W. Mink, “Quasi-optical power combining of solid-state rnillimeter-
wave sources,” IEEE Trans. Microwave Theory Tech,, vol. MTT34, pp.
273–279, Feb. 1986.
G. D. Boyd and J. P. Gordon, “ConfocaI multimode resonator theory for
millimeter through optical wavelength masers,” Bell Syst. Tech. J, vol.
40, pp. 489–509, Mar. 1961.
G. Goubau, “Bernn waveguides,” Advances in Microwaves. New York
Academic Press, 1968, vol. 3, pp. 67-126.
R. F. Soohoo, “Nonconfocal multimode resonators for masers,” Proc.
IEEE, vol. 51, pp. 70–75, Jan. 1963.


