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A Dyadic Green’s Function for the Plano-Concave
Quasi-Optical Resonator
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Abstract—An approximate dyadic Green’s function is derived
for a quasi-optical resonator. The Green’s function is comprised
of resonant and nonresonant terms corresponding to coupling to
the modal and nonmodal resonator fields. The effect of losses
due to diffraction, finite reflector conductivity and radiation
are included. Experimental one- and two-port measurements of
antennas in an X-band cavity compare favorably with theoretical
predictions.

I. INTRODUCTION.

N APPROXIMATE dyadic Green’s function, Ge,, is

developed which is suitable for use in the design and
analysis of cavity type quasi-optical power combiners. Fig. 1
depicts the resonator which consists of an infinite, perfectly
conducting plane located at z = 0, and a partially transparent
shallow spherical reflector which intersects the z-axis at z = D
and has a rectangular aperture of dimensions 2a,, and 2a,. Ge,
is determined by separately considering the resonant cavity
modal fields, and nonresonant fields so that

Ge, = Ge, + Ge,, 6))

where the subscripts r and n refer to resonant and nonresonant

fields respectively. Ge, is determined using the approach of
[1] generalized for arbitrary resonator spacing and operating
frequency. Ge,, is found using a half space Green’s function,
Gey,, then considering the field components which cannot
couple into cavity modes.

II. RESONANT FIELDS

A. Beam Modes

The resonant electric fields within the cavity are to be the
superposition of a diverging modal wavebeam traveling in
the &, direction (E},) and a converging modal wavebeam
traveling in the —a, direction (F.,,). Assuming that all
resonator dimensions are large compared with a wavelength,
that D%/a? >> N holds for both & = a,, and a = ay, and that
the Fresnel number N = a2/(D)) is sufficiently large, the

Manuscript received April 6, 1993. This work was supported in part by the
U.S. Army Research Office through grant DAAL03-89-D-0030.

P.L. Heron, G.P. Monahan, and M. B. Steer are with the High Frequency
Electronics Laboratory, Department of Electrical and Computer Engineering,
North Carolina State University, Raleigh, NC 27695-7911.

F. W. Schwering is with CECOM, Atin. AMSEQ-RD-C3-D, Ft. Monmouth,
NJ 07703-5203.

J.W. Mink is with the United States Army Research Office, P.O. Box
12211, Research Triangle Park, NC 27709-2211.

IEEE Log Number 9210805.

31 52
PARTIALLY
TRANSMITTING
PLANAR REFLECTOR
REFLECTOR L
SOURCE CURRENT
DENSITY Jg
N I N Ry 2N I
z=d
A
a —
y
[ z=D
A
aZ

z=0
Fig. 1. Cross-section of the Plano-concave resonator.

traveling wavebeams can be expressed as Hermite-Gaussian
functions for rectangular apertures [2]:
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where the Hermite polynomials are defined by
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= 3y(mr(e-2)),
"=y (me(e-7))

In these expressions F,, Fy are the focal lengths of the
concave reflector due to curvature along the = and y axes,
respectively, and %k is the free space wavenumber [3]. The
wave beam modes are normalized and in any constant z plane
satisfy the orthogonality condition

\/E / ELEY dS = Fésmbin. @)
HJs

B. Cavity Resonant Fields

Boundary conditions are applied at the reflector surfaces to
determine the form of the cavity modal resonant fields. The
planar reflector is assumed to be perfectly conducting so that
a, X E =0 at z = 0. The spherical reflector is characterized
by a reflection coefficient R,,,,, and a transmission coefficient
Tonn for the mn th Hermite-Gaussian beam mode. Resonant
transverse fields excited by a source current are expressed as
a series of these modal fields with the coefficients determined
by use of the Lorentz reciprocity theorem and an applied test
field. This test field consists of a single mode wave beam
with polarization components in both the &, and a, directions
which converges on the cavity from z > D. The transverse
modal test fields are

— cst(E.;‘, - E;t)a
ET,st = {aTEs_t + bstE:;n

0<z<D,
z>D.

&)
The coefficients cg; = ¢ )Gx +c ay, by = b(w)izslc + bfft’)a ,
and ar = a, + a, for each of the regions are related through
the boundary conditions at the spherical reflector. It can be
shown that

Tst&T
gt = o — 6
Cat 1+ Rst'lpst ( )
and
Rst th ) A
byt = — 2 7
* (¢st 1+ Rst"l)st (

where v,; = E}L/E,, is evaluated at the surface of the

The resonant source fields excited by a current density Jg
in the z = d plane are expressed as the series

fmn(E';m - E'r:n)’ 0 S z< d7
Es=) { amn(Ep, ~ (1 +emn)Ef,), d<2z<D,
mn gmnE;'m, z> D,
®)

and the fields Hr and Hg are found using

HE _:}:\/;asz )

Using the boundary conditions at the spherical reflector as
well as requiring continuity of the field at z = d on a mode by
mode basis, the expansion coefficients of Eg for the various
regions are related by

1
1+ €mn) = ~=—
(Ut emn) =~
_ Rmn"/jmn
amn - gmn T b
mn
(- )
—a e Yrrmn 10
fm'n mn 1 _ Tmn ? ( )

where Ty = E},/E,, is evaluated at {z,y,z} =
{0,0,d}. The unknown coefficients of (8) can now be de-
termined using ET ¢ and the Lorentz reciprocity theorem.

C. Application of Reciprocity Theorem

The Lorentz reciprocity theorem is now applied over the
volume 2 which is bounded by the surface S = S; + S as
shown in Fig. 1. For this situation, the Lorentz integral is

f(ET XHs—Es XHT) -fdS = —/HET-Jst (11)
S

Since @, X E = 0 at z = 0, the integral on S; vanishes. Using
(4) with (5), (8), and (9), the integral over S reduces to

\/—%;/ mnEstr X (82 X )

+E}, Engy % (@, X ér)] - 6.dS.  (12)

Since the @&, component of Jg produces an &, polarized
electric field and the @, component of Js produces an &,
polarized electric field, (11) and (12) result in

Tmn

- mn + =\
spherical reflector. Since at z = D the phase fronts of all Imn = 2(1 + Rmn¥mn) Q(E"m Enn)Iz - JodV, (13)
modes correspond approximately to the surface of the spherical _
reflector [2], 1, is evaluated at {z,y, z} = {0,0, D}. where It = GG, + dyay.
RonVmntTmn ’-—- A Fi
—ppeteattnn) (B — B} ) (Enn - Ef )T, 0<2<4d,
Ger = Z T(H—mélmj%% (E_ mn"/’mn)( - E;;n)It, d < # < D, (14)
mn m n( mn)It’ D <z,
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Fig. 2. Comparison of theoretical (line) and measured (points) modal field

distribution for the TEMgg and TEMg; modes along the line y = —13.2 cm.

III. GREEN’S FUNCTION

The cavity resonant fields are expressed by combining (8),
(10), and (13). The resonant Green’s function is then written
from the resulting expression as (14) (see (14) at the bottom
of p. 257) where E’in is a function of the source coordinate
system ¥ = {£, 9, £}, and E,?m is a function of the observation
coordinate system r = {z,y,z}.

Conductor losses and mode diffraction losses are included
in (14) by perturbing the value of R,,,. Diffraction losses are
computed using the method proposed by Soohoo [4] in which
an integral equation for the resonator is formulated by use
of Huygen’s principle, then solved numerically to determine
a modal beam transit gain. Losses due to finite conductivity
of metallic reflectors are computed using surface resistance
calculations. The conductor losses at the planar reflector are
also lumped into the characteristics of the spherical reflector.
Equation (14) is modified by multiplying R,,, by the modal
transit gain and conductor reflection coefficient.

The nonresonant field term, Ge,,, is derived by assuming
that the nonresonant field structure near the plane z = d is
essentially unchanged if the spherical reflector is removed.
The half-space bounded by an infinite conducting plane has
a Green’s function

7

éeh + vv
I — — 1 (Go(r; F) — Go(r; F — 2Zd,
ot 72 (Go(r;7) o{r; ¥ — 2%a,))
+2G0(T;7€ - 22/&z)&z&za (15)
where
Go(ri#) = ZRURIT =) o T — a,a, + a8, + ara.

dr|r —#

Gey, includes coupling into paraxial Hermite—Gaussian trav-
eling wave beams that would become resonant modal fields in
the presence of the curved reflector. This component, Ge,, is
removed from Gey, to produce Ge,. Ge, is found using

éep = lim Qe,. (16)

mn >
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Fig. 3. Predicted (line), using (17), and measured (points) impedance for
two inverted-L antennas in a Plano-concave resonator.

Thus, the complete Green’s function for the interior of the
cavity is expressed using (1) as

Rmnwm.n
2(1 + Rinntmn)

E,’;rzn)jh

Gec = Geh - z
mn

0<z<D. (17)

IV. RESULTS AND CONCLUSION

The validity of (17) was investigated by comparing mea-
sured field-strength with that predicted by theory. An X-band
cavity was fed through the planar reflector by a short inverted-
L antenna. The resonant fields were mapped by studying
changes in the antenna reflection coefficient as a function
of the position of a small lossy sphere in the z = 40 mm
plane. Fig. 2 shows a comparison of the measured field profile
with that predicted by Ge, near resonance. The antenna is
electrically short and is treated as a point source. Verification
of the complete Green’s function was performed by taking
calibrated two-port measurements for two inverted-L. antennas
in the resonator. The theoretical impedance Z;2 for the two
antennas in the cavity was computed using (17) and showed
good agreement with measurements. Fig. 3 shows typical
results comparing measured and calculated values of |Z;2].

In conclusion, the dyadic Green’s function represents the
resonant and nonresonant fields excited by a current density
and may be used in the design of probe or antenna excited
quasi-optical cavities and Gaussian waveguiding systems.
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